Skip to main content

Spinal-generated movement disorders: a clinical review

A Publisher’s Erratum to this article was published on 22 November 2016


Spinal-generated movement disorders (SGMDs) include spinal segmental myoclonus, propriospinal myoclonus, orthostatic tremor, secondary paroxysmal dyskinesias, stiff person syndrome and its variants, movements in brain death, and painful legs-moving toes syndrome. In this paper, we review the relevant anatomy and physiology of SGMDs, characterize and demonstrate their clinical features, and present a practical approach to the diagnosis and management of these unusual disorders.


Spinal-generated movement disorders (SGMDs) refers to those movement disorders that originate from the spinal cord, or in which the spinal cord plays an important role. SGMDs are central in origin, although in some SGMDs (such as painful legs-moving toes syndrome (PLMT) or orthostatic tremor (OT)), both peripheral and supraspinal mechanisms are also likely involved. We chose to highlight SGMDs in this review because they are unusual, and by considering them as a group we may highlight similar approaches to evaluation and treatment [1]. Before discussing SGMDs, we will review the relevant anatomy of the spinal cord.


Spinal cord anatomy and physiology

Afferent signals are conveyed from the axons of dorsal root ganglia to the spinal cord gray matter. Efferent signals originate in the anterior (ventral) horn cells or alpha-motor neurons. Relay circuits may be monosynaptic (such as the muscle stretch reflex), or polysynaptic, (such as the flexion-withdrawal reflex). In the muscle stretch reflex, the afferent signal comes from the muscle spindle via Ia afferent fibers, and an efferent signal is conveyed to the corresponding extrafusal muscle fiber, leading to muscle contraction (Fig. 1a). Ia afferent fibers also convey signals to Ia inhibitory interneurons to inhibit the antagonist muscle, a phenomenon called reciprocal inhibition (Fig. 1a). The Renshaw cell, another type of spinal interneuron, functions in the feedback system by receiving the signal from the collateral axons of the alpha-motor neuron and sending an inhibitory signal to the same alpha-motor neuron and Ia inhibitory interneuron (Fig. 1b).

Fig. 1

Major spinal reflexes include muscle stretch and cutaneous reflexes. a. The muscle stretch reflex. The afferent signal of the muscle stretch reflex from the muscle spindle is conveyed via Ia afferent fibers which are axons of dorsal root ganglia. The proximal axons then synapse directly with the alpha-motor neuron (a monosynaptic reflex), which in turn conveys an efferent signal to the corresponding extrafusal fibers of the agonist muscle leading to muscle contraction. Ia afferent fibers also synapse with Ia inhibitory interneurons, which in turn convey inhibitory signals to antagonist muscles, (reciprocal inhibition). b. The feedback control of the muscle stretch reflex. The Renshaw cell is the specialized inhibitory interneuron that functions in feedback control of the alpha-motor neurons in A. It receives input from collateral axons of the alpha-motor neuron controlling agonist muscles, and sends inhibitory signals back to the same alpha-motor neuron and also inhibitory signals to the alpha-motor neuron controlling antagonist muscles. The alpha-motor neurons, inhibitory interneurons and Renshaw cells also receive supraspinal control via descending tracts such as corticospinal or rubrospinal pathways. c. The cutaneous or flexion-withdrawal reflex. The cutaneous or flexion-withdrawal reflex is a polysynaptic reflex. Cutaneous nociceptive receptors send afferent signals via Aδ fibers which synapse with multiple interneurons before finally synapsing with the alpha-motor neuron. The interneurons connect the afferent and efferent signals, resulting in an excitatory signal to the ipsilateral flexor and contralateral extensor muscles, and an inhibitory signal to the ipsilateral extensor and contralateral flexor muscles. By this mechanism, flexion of the ipsilateral agonist muscle withdraws the limb from the nociceptive stimuli. An opposite chain is reversed in the opposite limb to prepare for support

The second major reflex loop is the flexion-withdrawal reflex. Cutaneous nociceptive receptors send afferent signals via Aδ fibers which synapse with multiple interneurons before finally synapsing with the alpha-motor neuron (Fig. 1c). The final output is excitation and inhibition (respectively) of the ipsilateral flexor and extensor muscles, and vice versa on the contralateral side. The end result is an ipsilateral limb withdrawal from the nociceptive stimuli, while the opposite limb prepares for support. In another reflex loop, Golgi tendon organs via Ib afferent fibers, along with joint and cutaneous receptors, convey signals to Ib inhibitory interneurons (not shown).

Spinal interneurons receive supraspinal descending influences from the motor cortex, brainstem and cerebellum via descending pathways (including corticospinal and rubrospinal pathways), helping to integrate and modulate movement. The principal neurotransmitters of spinal interneurons are gamma-aminobutyric acid (GABA) and glycine. When spinal inhibitory interneuron activity is reduced, for example due to impaired supraspinal control, alpha-motor neurons become hyperexcitable leading to abnormal involuntary movements.

Control of locomotion is extremely complex, and a full discussion of spinal control of gait is beyond the scope of this manuscript. We only briefly touch on several relevant mechanisms. The locomotor stepping pattern, the complex sequence of activation of flexor and extensor muscles required for walking, is controlled by the spinal locomotor system. In humans, both afferent sensory signals from peripheral receptors and central pattern generators (groups of neurons within the spinal cord that can generate rhythmic motor activities without sensory afferent input [2, 3]), play an important role in locomotion. Supraspinal control from the mesencephalic locomotor region and the cerebellum also modulates the spinal locomotor system. Propriospinal pathways ascend and descend along the long axis of the spinal cord to interconnect short and long segments. Their presence and role in humans has not yet been proven, but likely they help to coordinate forelimb and hindlimb movements during locomotion in quadrupeds [4].

Knowledge of spinal cord physiology is useful in understanding the pathophysiology of SGMDs. For example, dysfunction of inhibitory interneurons leads to spinal segmental myoclonus. In stiff person syndrome, reduced input of inhibitory neurons via supraspinal control has been implicated. Automatic stepping patterns in near-brain death may occur due to disconnection of supraspinal control, allowing the central pattern generators to fire uninhibited. A summary of lesions and their location responsible for SGMDs is discussed further in the text below and illustrated in Fig. 2.

Fig. 2

Localization in SGMDs. The figure illustrates the anatomical localization from the spinal cord, including the spinal reflex loop with inhibitory interneurons. The propriospinal pathway is shown on the opposite side. The interneurons and alpha-motor neuron also receives supraspinal control via the descending tracts. Higher levels of control including brainstem and thalamus are also depicted. The table demonstrates the location(s) that is(are) responsible for the pathophysiology in each SGMD. The location is classified as 1) the spinal cord including spinal interneurons, spinal reflex loops and other spinal locations, and 2) supraspinal control including descending tracts (part of which is also located in the spinal cord), brainstem and others

General considerations

If the clinician suspects that the spinal cord is a possible generator of involuntary movements (i.e., anatomically localizes the movements based on the distribution), phenomenology (i.e., classifying the movements based on their characters) may be useful in diagnosis. When myoclonic jerks are present, spinal segmental myoclonus (SSM), propriospinal myoclonus (PSM), and progressive encephalomyelitis with rigidity and myoclonus (PERM) should be considered. Orthostatic tremor (OT) is an example of a SGMD with tremor. Dystonic posturing is a phenomenon in secondary paroxysmal dyskinesias, including paroxysmal tonic spasms in multiple sclerosis (MS). SGMDs with stiffness include stiff person syndrome (SPS) and its variants, stiff limb syndrome (SLS) and PERM. Movements in brain death are often stereotyped, similar to primitive spinal reflexes or stepping patterns.

Certain examination findings may also help guide the diagnosis. One common pattern in SGMDs is involvement of one or multiple limbs without axial or bulbar involvement. Monocrural involvement occurs in SSM, SLS, and PLMT. Less commonly these disorders may affect two limbs. Almost all SGMDs lack bulbar or cranial involvement with few exceptions such as PERM, some cases of paroxysmal tonic movements in MS and undulating facial movements in brain death. Most SGMDs are typically hyperkinetic: myoclonus, tremor, dystonia, spinal reflexes or locomotor stepping movements all involve excess movements. Stiffness syndromes such as SPS or SLS may appear hypokinetic, but are better classified as sustained hyperkinetic spasms.

We next review the main clinical features, pathophysiology, and treatment of each SGMD (see Table 1 for summary). While treatment of SGMDs may include multiple modalities, pharmacotherapy of each SGMD is summarized in Table 2.

Table 1 Summary of phenomenology, pathophysiology, main clinical features, investigations and treatment of spinal-generated movement disorders (SGMDs)
Table 2 Pharmacological treatment of each spinal-generated movement disorder

Spinal segmental myoclonus (SSM)

SSM originates from one or a few adjacent segments of the spinal cord. Loss of inhibition of spinal interneurons leads to hyperexcitation of anterior horn cells [5]. SSM is typically rhythmic or semi-rhythmic, approximately 1–2 Hz in frequency, usually stimulus-insensitive [6], and involves one (or less commonly two) limbs or truncal/abdominal muscles (Additional file 1: Video segment 1). While there is no systematic study in the literature on the frequency of SSM among different spinal segments or myotomes, the involved body part(s) is(are) likely correlated with the anatomical location of the lesion(s) within the spinal cord. Differentiating SSM from myoclonus originating from the periphery (nerve roots, plexus or peripheral nerves) may be challenging. One important clue is that in peripherally-generated myoclonus, the distribution of muscles involved corresponds to the nerve roots [7, 8], plexus [9] or peripheral nerves [1013], whereas SSM typically involves multiple muscles innervated by one to three adjacent spinal levels and can be bilateral. In SSM patients it is critical to exclude structural lesions of the spinal cord such as vascular, inflammatory [14, 15], infectious [16, 17], postinfectious [18], demyelinating [19], degenerative [20, 21], paraneoplastic [22], and space-occupying lesions [23, 24] with contrast MRI imaging. Specific treatment addresses the underlying etiology if one is found, while symptomatic treatments include clonazepam [21, 25, 26], valproic acid [26] and levetiracetam [27].

Propriospinal myoclonus (PSM)

PSM may originate from the propriospinal pathways, which are classically distinguished by their relatively slow conduction in contrast to the faster-conducting corticospinal pathways. However, the presence and role of propriospinal pathways in humans has not yet been confirmed. Axial musculature is purely or predominantly involved in PSM, and patients typically have slow flexion truncal jerks that may be stimulus-sensitive (for example in response to tactile stimuli) (Additional file 1: Video segment 1). The latency between the examiner eliciting the stimulus and the patient’s movement is noticeably longer than in cortical myoclonus. This delay in onset of a truncal jerk after eliciting a reflex can be very helpful in the office evaluation of these patients, as demonstrated in Additional file 1: Video segment 1. Electrophysiology typically reveals recruitment or simultaneous spread of ascending and descending segments from a thoracic spinal source. PSM may be idiopathic or may be associated with spinal cord lesions. Some authors considered propriospinal myoclonus to be a functional disorder, due to the finding of Bereitschaftspotential or pre-movement potentials in some PSM patients [2832]. Distinguishing between organic and psychogenic PSM based on clinical grounds alone may not be reliable, and there is thus a role of electrophysiologic study [28, 29, 32]. However, a recent study found true microstructural defects such as disruption of fiber tracts in the spinal cord using diffusion tensor imaging [33]. Our personal view, supported by van der Salm et al. [28], is that not all PSM cases are psychogenic: there are both organic and psychogenic forms. Given similar clinical features among patients and that several movement disorders such as dystonia was, in history, incorrectly envisioned as a psychogenic disorder due to inadequate knowledge in pathophysiology, the strong conclusion on psychogenicity to the whole group of PSM patients has to be made with caution.

Orthostatic tremor (OT)

OT is a very fine fast tremor, felt in the legs when a patient stands, classically disappearing when the patient walks [34]. Patients typically complain of unsteadiness, and if symptoms have been present for a prolonged period they may complain of inability to walk or gait fearfulness (Additional file 2: Video segment 2). The oscillations may be audible when a stethoscope is placed behind the knee, producing a characteristic sound (“the helicopter sign”) [35]. OT is one of the highest frequency tremors, (13–18 Hz) [36, 37], and tremor may be invisible on exam [38, 39] but is usually palpable. In patients with no visible tremor, the diagnosis can generally be made by the history and examination illustrating inability to stand or unsteadiness while standing with improvement or no difficulty when walking. Tremor may also involve axial musculature or even the arms in the weight-bearing position [40]. Interestingly, tremor may be immediately attenuated by lightly touching objects such as a table, a wall, or the examiner’s hand (Additional file 2: Video segment 2). An important differential in OT is orthostatic myoclonus (OM), usually distinguished by electrophysiology [41, 42].

OT may be primary/idiopathic or secondary (or OT-plus), the later accompanying pontine [43], spinal [44], cerebellar [45], or parkinsonian pathology [46]. Two cases of OT with concomitant hydrocephalus in the setting of aqueductal stenosis and chronic relapsing polyradiculoneuropathy have been reported [47]. Investigations such as neuroimaging of the brain or spinal cord in OT patients are not mandated unless other neurologic signs are present. OT is typically treated with clonazepam or gabapentin [48], and response to treatment can occasionally be dramatic (Additional file 2: Video segment 2). Dopamine agonists or levodopa may be useful, especially in cases with concomitant parkinsonism [46, 49]. Other medications such as propranolol, primidone, phenytoin, carbamazepine and levetiracetam have been used, with variable success [46, 50]. Possible sources of the generator in OT include supraspinal structures such as the brainstem [51, 52], thalamus [53], spinal cord [52, 54] and cerebellum [55]. However, the emergence of OT after spinal cord lesions [54], and the benefit of spinal cord stimulation in medically-refractory OT [56] support a possible spinal etiology.

As a mimicker of OT, OM will be discussed briefly here. Patients with OM usually present with gait unsteadiness and a complaint of leg shaking or jerking [41, 42]. Difficulty initiating gait or “gait apraxia” is often found [41, 42]. Due to these symptoms, patients may be misdiagnosed as normal pressure hydrocephalus or OT [42]. Over 50–70 % of OM patients in two studies had associated neurodegenerative diseases including Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and Alzheimer’s disease [41, 42]. In addition to OT, it is thought to be one of under-recognized causes of unsteadiness [57, 58], and the diagnosis is confirmed by electrophysiologic study demonstrating myoclonus. Treatments that have been used in OM include clonazepam [42] and levetiracetam with variable results [42, 57]. However, the strong evidence is still lacking due to a small number of patients and short follow up duration.

Secondary paroxysmal dyskinesias, including paroxysmal tonic spasms in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD)

Secondary paroxysmal dyskinesias may involve the spinal cord. Important clues that a paroxysmal dyskinesia is secondary rather than primary include the presence of significant pain [59] and an abnormal interictal examination. Secondary paroxysmal dyskinesias may occur in hypoparathyroidism [60], pseudohypoparathyroidism [61, 62], supraspinal lesions [59, 63], spinal cord glioma [64] and spinal cord compression [65, 66].

Paroxysmal tonic spasms in MS, also called paroxysmal dystonia or secondary dyskinesias, are one of the most common causes of secondary paroxysmal dyskinesias. Painful dystonic spasms usually involve an ipsilateral arm and/or leg or face in some cases, without kinesigenic trigger, lasting several seconds to minutes [67, 68]. Episodes are often aggravated by hyperventilation, likely due to respiratory alkalosis and increased ephaptic transmission between partially demyelinated axons [69]. Paroxysmal tonic spasms can occur as the initial presentation of MS [70], but are usually seen once the disease is well established. It is important to remember that paroxysmal spasms of MS are not diagnostic of a spinal cord locus, and they may also originate in the contralateral cerebral peduncle [71], thalamus [72, 73], or internal capsule [71, 74, 75]. Paroxysmal tonic spasms often behave independently of MS; they can remit in spite of progression of MS or vice versa, and an EEG may be required to rule out seizures or epilepsia partialis continua [76, 77]. Paroxysmal tonic spasms are even more common in NMOSD than in MS [78, 79]. One recent study in NMOSD found that painful tonic spasms are more common in aquaporin-4 (AQP-4) antibody-positive than myelin oligodendrocyte glycoprotein (MOG) antibody-positive cases [80].

The pathophysiology of paroxysmal tonic spasms in MS or NMOSD remains unclear. Osterman and Westerberg proposed that ephaptic transmission between demyelinated axons [67] might be responsible. Alteration in supraspinal control might lead to a reduction in inhibitory spinal interneuron output, resulting in hyperexcitation of the alpha-motor neuron. Paroxysmal tonic spasms in MS or NMOSD are typically treated with low-dose carbamazepine [67, 81] or acetazolamide [74, 82]. Gabapentin has also been reported to be effective [83].

Stiff person syndrome (SPS) and stiff limb syndrome (SLS)

Classic SPS is characterized by stiffness of the trunk and limb muscles. Axial musculature is usually involved, producing a classic hyperlordotic, dromedary gait. Stiff limb syndrome (SLS) is a rare form of SPS in which one limb is involved (Additional file 1: Video segment 1). SPS affects women disproportionately [84]. The electrophysiologic hallmark of SPS and SLS is continuous motor unit activity (CMUA) that persists even when the patient tries to relax [85]. High titers of glutamic acid decarboxylase (GAD) antibodies are found in 80 % of SPS [86]. GAD antibodies are not specific for SPS, as they may also be present in type I diabetes, autoimmune cerebellar ataxia, and autoimmunue polyglandular syndrome [87], either with or without SPS. Amphiphysin antibodies occur less commonly than GAD antibodies, and when present may signify an underlying malignancy [8893]. While GAD and amphiphysin are proteins in the presynaptic terminal of inhibitory neurons, other antibodies to proteins at postsynaptic sites (GABAA and glycine receptors) have also been reported in SPS [9496]. Glycine receptor antibodies are not only associated with progressive encephalomyelitis with rigidity and myoclonus (PERM), but also classic and variant SPS, in both GAD antibody-positive and negative cases [96, 97].

Spinal and supraspinal pathways are important in SPS. Floeter and colleagues demonstrated abnormalities not only in spinal GABAergic circuits but also in spinal glycinergic inhibitory circuits [98]. The sensorimotor cortex [99] and motor and premotor cortices also likely play a role [100, 101]. Electrophysiologic abnormalities in the brainstem similar to hyperekplexia have also been demonstrated in SPS [102].

The diagnosis of SPS and SLS rests on the history, exam, comfirmation by physiology, and serology. Malignancy should be excluded, especially in SLS. Immunosuppressive therapy is the cornerstone of treatment, including intravenous steroids, IVIg or plasma exchange [91], although formal evidence-based guidelines regarding treatment are still lacking. For symptomatic treatment, oral pharmacologic agents include benzodiazepines, especially diazepam, and baclofen [85]. In cases where symptoms remain poorly controlled, intrathecal baclofen or spinal cord stimulation may be considered [103].

Progressive encephalomyelitis with rigidity and myoclonus (PERM)

PERM is considered to be a variant of SPS (“stiff-person-plus” syndrome) or a form of brainstem myoclonus [104]. It has been proposed to originate from the brainstem and spinal cord [104], and is thus not a pure SGMD. However, we include it in this review because of the clinical overlap with SPS and similarity in treatment approach. In the spinal cord, loss of spinal inhibitory interneurons leads to excess excitation of alpha-motor neurons, similar to SPS [105]. PERM was historically termed “spinal neuronitis” due to the finding of degeneration of long descending motor tracts [104], however cranial involvement and antibodies to glycine receptors [106] support a brainstem origin as well.

PERM is often rapidly progressive and typically involves the trunk or lower limbs. Myoclonus is often present, hence the term “stiff-person-plus” or “jerking SPS” [107]. Myoclonus typically involves the trunk or limbs as well as cranial-nerve innervated muscles, and is frequently stimulus-sensitive. Other brainstem signs such as nystagmus, oculomotor abnormalities, dysarthria, and dysphagia can be present, as well as cerebellar ataxia [108, 109], cognitive impairment, encephalopathy and seizure [106, 110, 111]. Dipeptidyl-peptidase-like protein-6 (DPPX) [108] and glycine receptor antibodies [96, 106, 111, 112] may be present, in addition to the previously mentioned anti-GAD antibodies [113]. The diagnostic work-up in patients with PERM includes imaging of the brainstem and spinal cord to rule out structural lesions, cerebrospinal fluid exam to look for infectious, parainfectious, paraneoplastic [114, 115] and autoimmune etiologies, as well as anti-GAD and glycine receptor antibodies in serum and cerebrospinal fluid. Evidence-based recommendations are lacking, but immunosuppressive therapies including steroids, IVIg, plasma exchange and others agents such as mycophenolate mofetil or azathioprine have been used. [106, 108, 110, 112].

Movements in brain death

Movements in brain death are in fact normal findings and are not rare. They may be classified as automatisms, where movements occur spontaneously without stimuli, and reflexes, where movements occur after stimuli [116]. The latency between onset of brain death and the occurrence of movements varies from minutes to days [116, 117]. Spittler and colleagues proposed that this latency could be attributed to spinal shock. More than 40 types of movements have been described; most involve the trunk or limbs, however some involve cranial regions such as facial myokymia, eyelid opening and tongue myoclonus [118, 119].

Examples of automatisms include tonic arm flexion, abdominal contraction, knee, hip and leg flexion, and undulating toe movements [116, 120]. Reflex movements may occur after muscle stretch (muscle stretch reflexes), or stimuli to skin or deeper tissue (cutaneo-muscular reflexes). The reflexes can involve only one (monosegmental reflexes) or multiple segments (oligo- or polysegmental reflexes) of the spinal cord. Spittler and colleagues described 31 spinal reflexes [117], including muscle stretch reflexes of biceps, triceps, brachioradialis, finger flexion after biceps stretching and cremasteric reflexes. Neck flexion was reported to trigger movements such as shoulder protrusion, abdominal contraction, hip flexion and adduction or abdominal contraction. Movements following finger pinching included shoulder protrusion, abdominal contraction or arm/finger flexion. Sole stimulation, as in testing for the Babinski sign, led to hip and/or knee flexion or toe flexion [121]. Perhaps the most dramatic reflex is the Lazarus sign, in which both elbows and hands flex towards the chin and the patient may appear to arise from the bed [122, 123]. It can occur spontaneously (automatism) or as a reflex after stimuli such as during apnea testing or neck flexion. It is important for clinicians to recognize automatisms and reflexes so that the diagnosis of brain death is not distracted by their presence, and the patient’s family is appropriately reassured. For video examples, please refer to McNair and Meador [121], and Bueri et al. [122].

The movements of brain death are thought to be generated by the spinal cord. Several mechanisms have been proposed, including disinhibition of anterior horn cells disconnected from supraspinal control [116], and release of more phylogenetically primitive patterns of movement due to decoupling of the spinal cord from the neocortex and brainstem [117]. Interestingly, automatic stepping has been reported in patients prior to the declaration of brain death when the brainstem was compromised from central herniation [124]. In cats transected at the rostral margin of the superior colliculi, animals demonstrated spontaneous walking. The stepping reflex also occurs in infants before 6 weeks of age when they are held with feet placed on a flat surface. Collectively, these phenomena support the idea of a central pattern generator for locomotion within the spinal cord that may be responsible for spinal automatisms when it is disconnected from descending inhibitory influences.

Painful legs-moving toes syndrome (PLMT)

Although named PLMT, this syndrome can be painless or even involve upper extremities, (painless legs-moving toes or painful arms [or hands]-moving fingers syndrome [125, 126]). The movements of toes or fingers are slow, writhing, typically 1–2 Hz, occurring in vertical (flexion/extension) and/or horizontal (abduction/adduction) planes (Additional file 3: Video segment 3). Involuntary movements of toes or fingers in a pure horizontal plane is virtually pathognomonic of the condition. Initially one limb may be involved, but contralateral spread can occur [127]. Pain is often the most debilitating feature of PLMT, and treatments such as gabapentin or pregabalin may be helpful [128]. Spinal cord stimulation has been reported to improve the movements [129]. PLMT may occur after nerve root, plexus or peripheral nerve lesions [127], and less commonly with spinal cord lesions or compression [127, 130]. The pathophysiology of PLMT remains unknown. One proposal included peripheral nerve pathology triggering central spinal and/or supraspinal reorganization [127, 131, 132]. Pain, possibly attributed to central sensitization, and the complexity of the involuntary movements support a central rather than peripheral etiology [127].

PLMT is difficult to treat. Studies or reports have been conducted on a small scale. It is however important to look for and treat an underlying peripheral neuropathy. In addition to gabapentin, pregabalin and spinal cord stimulation as mentioned above, various treatments reported to be effective include baclofen, carbamazepine [127, 133], benzodiazepines such as clonazepam, tricyclic antidepressants [134], adenosine [135], sympathetic blockade [127, 136], epidural block [137], transcutaneous electrical nerve stimulation [138] and botulinum toxin injection [139141].


SGMDs are a unique group of movement disorders, sharing many features. We hope that our review will help clinicians care for these challenging patients.

Video segments

Video segment 1

Additional file 1: Video segment 1 ( demonstrates the phenomenology of spinal segmental myoclonus, priopriospinal myoclonus (PSM) and stiff limb syndrome. Patient 1 is a 50-year-old woman with a 3-year history of spinal segmental myoclonus affecting the lower back and abdomen. Examination revealed symmetric volleys of myoclonic jerks in abdominal muscles, worsened when she lifted her legs against resistance. A rectus jerk could be elicited by tapping the patellar reflex with sufficient force, illustrating stimulus-sensitivity, unusual for this disorder. Patient 2, a 31-year-old woman, developed spinal segmental myoclonus several weeks after a severe viral upper respiratory infection. Myoclonic jerks of the thoracic abdominal muscles were rapid and symmetric. Movements interfered with her ability to provide diaphragmatic support for speech or sustained vocalization. Patient 3 demonstrated spinal segmental myoclonus of the thoracic abdominal muscles, worse on leaning to the right. The next three patients demonstrate classic phenomenology of PSM. Of note, the diagnosis of PSM in our patients was made on clincial grounds. The more specific diagnosis of organic or psychogenic PSM cannot be confirmed due to unavailibility of electrophysiologic study. Patient 4 is a 62-year-old woman who developed propriospinal myoclonus in her upper legs, buttocks and lower torso. Movements occurred with sitting and lying down, disappeared on standing, and persisted in sleep (by report). A charactersitic delay in reflex-induced myoclonic jerks was evident bilaterally, with both the biceps and knee jerks. Patient 5 is a 64-year-old woman with a history of thoracic spine surgery at the T7-8 level, with a 13-year history of priopriospinal myoclonus. Abdominal jerks coalesce in the video to produce continuous abdominal spasms. Biceps and triceps reflexes trigger a time-delayed jerk that also flexes the trunk. Patient 6 demonstrates propriospinal myoclonic jerks of the trunk on standing which were initially dismissed as psychogenic. A characteristic time-delayed jerk is evident with biceps and patellar reflexes. The work up of Patients 1–6 included spinal magnetic resonance imaging which was negative for structural lesions in the spinal cord. Clonazepam, valproic acid and/or levetiracetam were employed in these patients with variable improvement (not shown in the video). Patient 7 developed stiffness and cramping of his left leg with walking. His medical history was notable for juvenile diabetes, and anti-GAD antibody was markedly positive. Continuous motor unit firing on EMG confirmed the diagnosis of stiff limb syndrome (SLS). Treatment with intravenous immunoglobulin and diazepam dramatically improved his symptoms.

Video segment 2

Additional file 2: Video segment 2 ( demonstrates the rich phenomenology of orthostatic tremor (OT) in five patients. Patient 1 is an 83-year-old man who presented with a 10-year history of difficulty standing while shaving or waiting for a train. Examination revealed OT, visible and palpable in the legs, as well as sense of imbalance triggered by standing and immediately relieved by walking. Patient 2 is a 75-year-old woman with a thoracic arachnoid cyst and a 3-year history of OT. Symptoms were triggered by standing, relieved by walking, and recurred even as she briefly stopped to turn. The movements may be secondary OT. We cannot prove they are the result of the arachnoid cyst, but they started after the cyst was recognized. Patient 3, an 86-year-old man with a 1-year history of significant OT, demonstrates the marked benefit he obtains from peripheral sensory input (gently holding the examiner’s hand, or touching the wall with his hand). The video mimics how he uses this sensory input to ambulate in his home, walking while guiding the palm or even the dorsum of his hand along the wall. Patient 4, a 76-year-old woman with a 6-year history of severe OT, had already developed gait fearfulness by the time of her evaluation. Examination in the office revealed OT which improved instantly by grasping the examiner’s hand or even one finger. She would not allow the examiner to let go of her hands to stand unassisted. Treatment with clonazepam 0.5 mg twice daily markedly improved her OT, allowing her to walk unassisted (not shown on video). Patient 5, a 70-year-old woman with a 3-year history of OT, could no longer walk without a rolling walker. Examination demonstrated OT that would occur within 5 seconds of standing and was relieved by touching the table. Her walking was impaired although she was able to ambulate with the sensory input of holding one finger of the examiner’s hand. Treatment with clonazepam 0.5 mg twice daily allowed her to stand and walk unassisted (demonstrated on video).

Video segment 3

Additional file 3: Video segment 3 ( demonstrates the phenomenology of painful legs-moving toes (PLMT) and painful hands-moving fingers (PHMF) syndromes. Patient 1 presented with a 3-year history of involuntary movements of the toes, observed even in deep sleep. Movements were accompanied by pain that was refractory to medication. Examination revealed bilateral undulating movements of the toes in both flexion/extension and the lateral plane. Patient 2 presented with involuntary movements of the left toes which were annoying but not painful. Examination revealed undulating lateral movements of all five toes, consistent with painless, unilateral PLMT. Patient 3 demonstrates similar movements affecting the fingers of the left hand, accompanied by pain that persisted in sleep—PHMF Patient 4, a 53-year-old man with a 20-year history of pain and involuntary movements of the left hand, demonstrates a similar phenotype of PHMF. Side to side undulating movements of the third, fourth and fifth fingers were disabling and refractory to treatment.

Consent statement

Written informed consent was obtained from the patients for publication of all video segments. A copy of the written consent is available for review by the Editor-in-Chief of this journal.


  1. 1.

    Thiriez C, Gurruchaga JM, Goujon C, Fenelon G, Palfi S. Spinal stimulation for movement disorders. Neurotherapeutics. 2014;11:543–52.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol. 2003;114:1379–89.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol Rev. 1996;76:687–717.

    CAS  PubMed  Google Scholar 

  4. 4.

    Juvin L, Simmers J, Morin D. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci. 2005;25:6025–35.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Di Lazzaro V, Restuccia D, Nardone R, Oliviero A, Profice P, Insola A, et al. Changes in spinal cord excitability in a patient with rhythmic segmental myoclonus. J Neurol Neurosurg Psychiatry. 1996;61:641–4.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Davis SM, Murray NM, Diengdoh JV, Galea-Debono A, Kocen RS. Stimulus-sensitive spinal myoclonus. J Neurol Neurosurg Psychiatry. 1981;44:884–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Seidel G, Vieregge P, Wessel K, Kompf D. Peripheral myoclonus due to spinal root lesion. Muscle Nerve. 1997;20:1602–3.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Sotaniemi KA. Paraspinal myoclonus due to spinal root lesion. J Neurol Neurosurg Psychiatry. 1985;48:722–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Banks G, Nielsen VK, Short MP, Kowal CD. Brachial plexus myoclonus. J Neurol Neurosurg Psychiatry. 1985;48:582–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Lagueny A, Reboul G, Kien P, Duche B. Myoclonus of the serratus anterior muscle after posterolateral thoracotomy. Clin Neurol Neurosurg. 2014;122:1–3.

    PubMed  Article  Google Scholar 

  11. 11.

    Camerota F, Celletti C, Paoloni M, Serrao M, Inghilleri M, Pierelli F, et al. Myoclonus of the scapula after acute long thoracic nerve lesion: a case report. Mov Disord. 2006;21:71–3.

    PubMed  Article  Google Scholar 

  12. 12.

    Shin HW, Ye BS, Kim J, Kim SM, Sohn YH. The contribution of a spinal mechanism in developing peripheral myoclonus: a case report. Mov Disord. 2007;22:1350–2.

    PubMed  Article  Google Scholar 

  13. 13.

    Martinez MS, Fontoira M, Celester G, Castro del Rio M, Permuy J, Iglesias A. Myoclonus of peripheral origin: case secondary to a digital nerve lesion. Mov Disord. 2001;16:970–4.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Levy R, Plassche W, Riggs J, Shoulson I. Spinal myoclonus related to an arteriovenous malformation. Response to clonazepam therapy. Arch Neurol. 1983;40:254–5.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Casazza M, Bracchi M, Girotti F. Spinal myoclonus and clinical worsening after intravenous contrast medium in a patient with spinal arteriovenous malformation. AJNR Am J Neuroradiol. 1985;6:965–6.

    CAS  PubMed  Google Scholar 

  16. 16.

    Berger JR, Bender A, Resnick L, Perlmutter D. Spinal myoclonus associated with HTLV III/LAV infection. Arch Neurol. 1986;43:1203–4.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Dhaliwal GS, McGreal DA. Spinal myoclonus in association with herpes zoster infection: two case reports. Can J Neurol Sci. 1974;1:239–41.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Bhatia K, Thompson PD, Marsden CD. “Isolated” postinfectious myoclonus. J Neurol Neurosurg Psychiatry. 1992;55:1089–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Alroughani RA, Ahmed SF, Khan RA, Al-Hashel JY. Spinal segmental myoclonus as an unusual presentation of multiple sclerosis. BMC Neurol. 2015;15:15.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Kobayashi J, Yokochi F, Takasu M, Tobisawa S, Shimizu T. Spinal segmental myoclonus during postural maintenance in a patient with cervical spondylosis: a case report. Intern Med. 2011;50:1839–41.

    PubMed  Article  Google Scholar 

  21. 21.

    Hoehn MM, Cherington M. Spinal myoclonus. Neurology. 1977;27:942–6.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Roobol TH, Kazzaz BA, Vecht CJ. Segmental rigidity and spinal myoclonus as a paraneoplastic syndrome. J Neurol Neurosurg Psychiatry. 1987;50:628–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Allen NM, Moran MM, King MD. Not all twitching is epileptic! Hand myoclonus in a boy with spinal cord tumor. J Pediatr. 2013;162:431. e431.

    PubMed  Article  Google Scholar 

  24. 24.

    Massimi L, Battaglia D, Paternoster G, Martinelli D, Sturiale C, Di Rocco C. Segmental spinal myoclonus and metastatic cervical ganglioglioma: an unusual association. J Child Neurol. 2009;24:365–9.

    PubMed  Article  Google Scholar 

  25. 25.

    Jankovic J, Pardo R. Segmental myoclonus. Clinical and pharmacologic study. Arch Neurol. 1986;43:1025–31.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Agarwal P, Frucht SJ. Myoclonus. Curr Opin Neurol. 2003;16:515–21.

    PubMed  Google Scholar 

  27. 27.

    Keswani SC, Kossoff EH, Krauss GL, Hagerty C. Amelioration of spinal myoclonus with levetiracetam. J Neurol Neurosurg Psychiatry. 2002;73:457–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    van der Salm SM, Erro R, Cordivari C, Edwards MJ, Koelman JH, van den Ende T, et al. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology. 2014;83:1862–70.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    van der Salm SM, Koelman JH, Henneke S, van Rootselaar AF, Tijssen MA. Axial jerks: a clinical spectrum ranging from propriospinal to psychogenic myoclonus. J Neurol. 2010;257:1349–55.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Esposito M, Erro R, Edwards MJ, Cawley N, Choi D, Bhatia KP, et al. The pathophysiology of symptomatic propriospinal myoclonus. Mov Disord. 2014;29:1097–9.

    PubMed  Article  Google Scholar 

  31. 31.

    Erro R, Edwards MJ, Bhatia KP, Esposito M, Farmer SF, Cordivari C. Psychogenic axial myoclonus: clinical features and long-term outcome. Parkinsonism Relat Disord. 2014;20:596–9.

    PubMed  Article  Google Scholar 

  32. 32.

    Erro R, Bhatia KP, Edwards MJ, Farmer SF, Cordivari C. Clinical diagnosis of propriospinal myoclonus is unreliable: an electrophysiologic study. Mov Disord. 2013;28:1868–73.

    PubMed  Article  Google Scholar 

  33. 33.

    Roze E, Bounolleau P, Ducreux D, Cochen V, Leu-Semenescu S, Beaugendre Y, et al. Propriospinal myoclonus revisited: Clinical, neurophysiologic, and neuroradiologic findings. Neurology. 2009;72:1301–9.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Heilman KM. Orthostatic tremor. Arch Neurol. 1984;41:880–1.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Brown P. New clinical sign for orthostatic tremor. Lancet. 1995;346:306–7.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Thompson PD, Rothwell JC, Day BL, Berardelli A, Dick JP, Kachi T, et al. The physiology of orthostatic tremor. Arch Neurol. 1986;43:584–7.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord. 1998;13(3):2–23.

    PubMed  Google Scholar 

  38. 38.

    Fung VS, Sauner D, Day BL. A dissociation between subjective and objective unsteadiness in primary orthostatic tremor. Brain. 2001;124:322–30.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Gerschlager W, Brown P. Orthostatic tremor - a review. Handb Clin Neurol. 2011;100:457–62.

    PubMed  Article  Google Scholar 

  40. 40.

    Boroojerdi B, Ferbert A, Foltys H, Kosinski CM, Noth J, Schwarz M. Evidence for a non-orthostatic origin of orthostatic tremor. J Neurol Neurosurg Psychiatry. 1999;66:284–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    van Gerpen JA. A retrospective study of the clinical and electrophysiological characteristics of 32 patients with orthostatic myoclonus. Parkinsonism Relat Disord. 2014;20:889–93.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Glass GA, Ahlskog JE, Matsumoto JY. Orthostatic myoclonus: a contributor to gait decline in selected elderly. Neurology. 2007;68:1826–30.

    PubMed  Article  Google Scholar 

  43. 43.

    Benito-Leon J, Rodriguez J, Orti-Pareja M, Ayuso-Peralta L, Jimenez-Jimenez FJ, Molina JA. Symptomatic orthostatic tremor in pontine lesions. Neurology. 1997;49:1439–41.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Lee HM, Kwon DY, Park MH, Koh SB, Kim SH. Symptomatic orthostatic tremor with progressive cognitive impairment in spinal cord lesions. Clin Neurol Neurosurg. 2012;114:1329–31.

    PubMed  Article  Google Scholar 

  45. 45.

    Setta F, Manto MU. Orthostatic tremor associated with a pontine lesion or cerebellar disease. Neurology. 1998;51:923.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gerschlager W, Munchau A, Katzenschlager R, Brown P, Rothwell JC, Quinn N, et al. Natural history and syndromic associations of orthostatic tremor: a review of 41 patients. Mov Disord. 2004;19:788–95.

    PubMed  Article  Google Scholar 

  47. 47.

    Gabellini AS, Martinelli P, Gulli MR, Ambrosetto G, Ciucci G, Lugaresi E. Orthostatic tremor: essential and symptomatic cases. Acta Neurol Scand. 1990;81:113–7.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Ganos C, Maugest L, Apartis E, Gasca-Salas C, Caceres-Redondo MT, Erro R, et al. The long-term outcome of orthostatic tremor. J Neurol Neurosurg Psychiatry. 2015.

  49. 49.

    Wills AJ, Brusa L, Wang HC, Brown P, Marsden CD. Levodopa may improve orthostatic tremor: case report and trial of treatment. J Neurol Neurosurg Psychiatry. 1999;66:681–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Hellriegel H, Raethjen J, Deuschl G, Volkmann J. Levetiracetam in primary orthostatic tremor: a double-blind placebo-controlled crossover study. Mov Disord. 2011;26:2431–4.

    PubMed  Article  Google Scholar 

  51. 51.

    Wu YR, Ashby P, Lang AE. Orthostatic tremor arises from an oscillator in the posterior fossa. Mov Disord. 2001;16:272–9.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Muthuraman M, Hellriegel H, Paschen S, Hofschulte F, Reese R, Volkmann J, et al. The central oscillatory network of orthostatic tremor. Mov Disord. 2013;28:1424–30.

    PubMed  Article  Google Scholar 

  53. 53.

    Guridi J, Rodriguez-Oroz MC, Arbizu J, Alegre M, Prieto E, Landecho I, et al. Successful thalamic deep brain stimulation for orthostatic tremor. Mov Disord. 2008;23:1808–11.

    PubMed  Article  Google Scholar 

  54. 54.

    Norton JA, Wood DE, Day BL. Is the spinal cord the generator of 16-Hz orthostatic tremor? Neurology. 2004;62:632–4.

    PubMed  Article  Google Scholar 

  55. 55.

    Feil K, Bottcher N, Guri F, Krafczyk S, Schoberl F, Zwergal A, et al. Long-term course of orthostatic tremor in serial posturographic measurement. Parkinsonism Relat Disord. 2015;21:905–10.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Krauss JK, Weigel R, Blahak C, Bazner H, Capelle HH, Grips E, et al. Chronic spinal cord stimulation in medically intractable orthostatic tremor. J Neurol Neurosurg Psychiatry. 2006;77:1013–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Gasca-Salas C, Arcocha J, Artieda J, Pastor P. Orthostatic myoclonus: an underrecognized cause of unsteadiness? Parkinsonism Relat Disord. 2013;19:1013–7.

    PubMed  Article  Google Scholar 

  58. 58.

    Leu-Semenescu S, Roze E, Vidailhet M, Legrand AP, Trocello JM, Cochen V, et al. Myoclonus or tremor in orthostatism: an under-recognized cause of unsteadiness in Parkinson’s disease. Mov Disord. 2007;22:2063–9.

    PubMed  Article  Google Scholar 

  59. 59.

    Blakeley J, Jankovic J. Secondary paroxysmal dyskinesias. Mov Disord. 2002;17:726–34.

    PubMed  Article  Google Scholar 

  60. 60.

    Thomas R, Behari M, Gaikwad SB, Prasad K. An unusual case of paroxysmal kinesigenic dyskinesia. J Clin Neurosci. 2002;9:94–7.

    PubMed  Article  Google Scholar 

  61. 61.

    Prashantha DK, Pal PK. Pseudohypoparathyroidism manifesting with paroxysmal dyskinesias and seizures. Mov Disord. 2009;24:623–4.

    PubMed  Article  Google Scholar 

  62. 62.

    Dure LS, Mussell HG. Paroxysmal dyskinesia in a patient with pseudohypoparathyroidism. Mov Disord. 1998;13:746–8.

    PubMed  Article  Google Scholar 

  63. 63.

    Norlinah MI, Shahizon AM. Paroxysmal dyskinesia as an unusual and only presentation of subcortical white matter ischaemia: a report of two cases. Med J Malaysia. 2008;63:410–2.

    CAS  PubMed  Google Scholar 

  64. 64.

    Marrufo M, Politsky J, Mehta S, Morgan JC, Sethi KD. Paroxysmal Kinesigenic Segmental Myoclonus due to a spinal cord glioma. Mov Disord. 2007;22:1801–3.

    PubMed  Article  Google Scholar 

  65. 65.

    Yulug B, Bakar M, Ozer HH, Yilmaz M, Unlu B. Paroxysmal kinesigenic dyskinesia and cervical disc prolapse with cord compression: more than a coincidence? J Neuropsychiatry Clin Neurosci. 2008;20:237–9.

    PubMed  Article  Google Scholar 

  66. 66.

    Cosentino C, Torres L, Flores M, Cuba JM. Paroxysmal kinesigenic dystonia and spinal cord lesion. Mov Disord. 1996;11:453–5.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Osterman PO, Westerberg CE. Paroxysmal attacks in multiple sclerosis. Brain. 1975;98:189–202.

    Article  Google Scholar 

  68. 68.

    Tranchant C, Bhatia KP, Marsden CD. Movement disorders in multiple sclerosis. Mov Disord. 1995;10:418–23.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Matthews WB. Paroxysmal symptoms in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1975;38:617–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Twomey JA, Espir ML. Paroxysmal symptoms as the first manifestations of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1980;43:296–304.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Spissu A, Cannas A, Ferrigno P, Pelaghi AE, Spissu M. Anatomic correlates of painful tonic spasms in multiple sclerosis. Mov Disord. 1999;14:331–5.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Burguera JA, Catala J, Casanova B. Thalamic demyelination and paroxysmal dystonia in multiple sclerosis. Mov Disord. 1991;6:379–81.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Zenzola A, De Mari M, De Blasi R, Carella A, Lamberti P. Paroxysmal dystonia with thalamic lesion in multiple sclerosis. Neurol Sci. 2001;22:391–4.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Waubant E, Alize P, Tourbah A, Agid Y. Paroxysmal dystonia (tonic spasm) in multiple sclerosis. Neurology. 2001;57:2320–1.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Honig LS, Wasserstein PH, Adornato BT. Tonic spasms in multiple sclerosis. Anatomic basis and treatment. West J Med. 1991;154:723–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Striano P, Striano S, Carrieri PB, Boccella P. Epilepsia partialis continua as a first symptom of multiple sclerosis: electrophysiological study of one case. Mult Scler. 2003;9:199–203.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Sokic DV, Stojsavljevic N, Drulovic J, Dujmovic I, Mesaros S, Ercegovac M, et al. Seizures in multiple sclerosis. Epilepsia. 2001;42:72–9.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Usmani N, Bedi G, Lam BL, Sheremata WA. Association between paroxysmal tonic spasms and neuromyelitis optica. Arch Neurol. 2012;69:121–4.

    PubMed  Article  Google Scholar 

  79. 79.

    Kim SM, Go MJ, Sung JJ, Park KS, Lee KW. Painful tonic spasm in neuromyelitis optica: incidence, diagnostic utility, and clinical characteristics. Arch Neurol. 2012;69:1026–31.

    PubMed  Google Scholar 

  80. 80.

    Sato DK, Callegaro D, Lana-Peixoto MA, Waters PJ, de Haidar Jorge FM, Takahashi T, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;82:474–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Sghirlanzoni A, Pareyson D. Carbamazepine for paroxysmal dystonia due to spinal cord lesions. Ital J Neurol Sci. 1993;14:187.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Voiculescu V, Pruskauer-Apostol B, Alecu C. Treatment with acetazolamide of brain-stem and spinal paroxysmal disturbances in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1975;38:191–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Solaro C, Lunardi GL, Capello E, Inglese M, Messmer Uccelli M, Uccelli A, et al. An open-label trial of gabapentin treatment of paroxysmal symptoms in multiple sclerosis patients. Neurology. 1998;51:609–11.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Blum P, Jankovic J. Stiff-person syndrome: an autoimmune disease. Mov Disord. 1991;6:12–20.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Meinck HM, Thompson PD. Stiff man syndrome and related conditions. Mov Disord. 2002;17:853–66.

    PubMed  Article  Google Scholar 

  86. 86.

    Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med. 1990;322:1555–60.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Saiz A, Arpa J, Sagasta A, Casamitjana R, Zarranz JJ, Tolosa E, et al. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology. 1997;49:1026–30.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Folli F, Solimena M, Cofiell R, Austoni M, Tallini G, Fassetta G, et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N Engl J Med. 1993;328:546–51.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Panzer J, Dalmau J. Movement disorders in paraneoplastic and autoimmune disease. Curr Opin Neurol. 2011;24:346–53.

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Pittock SJ, Lucchinetti CF, Parisi JE, Benarroch EE, Mokri B, Stephan CL, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol. 2005;58:96–107.

    PubMed  Article  Google Scholar 

  91. 91.

    McKeon A, Robinson MT, McEvoy KM, Matsumoto JY, Lennon VA, Ahlskog JE, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012;69:230–8.

    PubMed  Article  Google Scholar 

  92. 92.

    Sommer C, Weishaupt A, Brinkhoff J, Biko L, Wessig C, Gold R, et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet. 2005;365:1406–11.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Murinson BB, Guarnaccia JB. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology. 2008;71:1955–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Raju R, Rakocevic G, Chen Z, Hoehn G, Semino-Mora C, Shi W, et al. Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome. Brain. 2006;129:3270–6.

    PubMed  Article  Google Scholar 

  95. 95.

    Alexopoulos H, Akrivou S, Dalakas MC. Glycine receptor antibodies in stiff-person syndrome and other GAD-positive CNS disorders. Neurology. 2013;81:1962–4.

    PubMed  Article  Google Scholar 

  96. 96.

    McKeon A, Martinez-Hernandez E, Lancaster E, Matsumoto JY, Harvey RJ, McEvoy KM, et al. Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol. 2013;70:44–50.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Baizabal-Carvallo JF, Jankovic J. Stiff-person syndrome: insights into a complex autoimmune disorder. J Neurol Neurosurg Psychiatry. 2015;86:840–8.

    PubMed  Article  Google Scholar 

  98. 98.

    Floeter MK, Valls-Sole J, Toro C, Jacobowitz D, Hallett M. Physiologic studies of spinal inhibitory circuits in patients with stiff-person syndrome. Neurology. 1998;51:85–93.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Levy LM, Levy-Reis I, Fujii M, Dalakas MC. Brain gamma-aminobutyric acid changes in stiff-person syndrome. Arch Neurol. 2005;62:970–4.

    PubMed  Google Scholar 

  100. 100.

    Kim MJ, Lim YM, Kim JS, Kim KK. GABAergic changes in (11)C-flumazenil PET in the drug-naive Stiff-Person syndrome. Can J Neurol Sci. 2013;40:91–3.

    PubMed  Article  Google Scholar 

  101. 101.

    Perani D, Garibotto V, Panzacchi A, Moresco RM, Ortelli P, Corbo M, et al. PET evidence of central GABAergic changes in stiff-person syndrome. Mov Disord. 2007;22:1030–3.

    PubMed  Article  Google Scholar 

  102. 102.

    Khasani S, Becker K, Meinck HM. Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship. J Neurol Neurosurg Psychiatry. 2004;75:1265–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Ughratdar I, Sivakumar G, Basu S. Spinal cord stimulation to abort painful spasms of atypical stiff limb syndrome. Stereotact Funct Neurosurg. 2010;88:183–6.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Whiteley AM, Swash M, Urich H. Progressive encephalomyelitis with rigidity. Brain. 1976;99:27–42.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Howell DA, Lees AJ, Toghill PJ. Spinal internuncial neurones in progressive encephalomyelitis with rigidity. J Neurol Neurosurg Psychiatry. 1979;42:773–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Carvajal-Gonzalez A, Leite MI, Waters P, Woodhall M, Coutinho E, Balint B, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137:2178–92.

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Leigh PN, Rothwell JC, Traub M, Marsden CD. A patient with reflex myoclonus and muscle rigidity: “jerking stiff-man syndrome”. J Neurol Neurosurg Psychiatry. 1980;43:1125–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Balint B, Jarius S, Nagel S, Haberkorn U, Probst C, Blocker IM, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82:1521–8.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Back T, Stoltenburg-Didinger G, Ploner CJ, Meisel H, Zschenderlein R. A new variant of progressive encephalomyelitis with rigidity associated with cerebellar ataxia and dementia: correlation of MRI and histopathological changes. A case report. Neurol Res. 1997;19:187–91.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Shugaiv E, Leite MI, Sehitoglu E, Woodhall M, Cavus F, Waters P, et al. Progressive encephalomyelitis with rigidity and myoclonus: a syndrome with diverse clinical features and antibody responses. Eur Neurol. 2013;69:257–62.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Turner MR, Irani SR, Leite MI, Nithi K, Vincent A, Ansorge O. Progressive encephalomyelitis with rigidity and myoclonus: glycine and NMDA receptor antibodies. Neurology. 2011;77:439–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Stern WM, Howard R, Chalmers RM, Woodhall MR, Waters P, Vincent A, et al. Glycine receptor antibody mediated Progressive Encephalomyelitis with Rigidity and Myoclonus (PERM): a rare but treatable neurological syndrome. Pract Neurol. 2014;14:123–7.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Meinck HM, Faber L, Morgenthaler N, Seissler J, Maile S, Butler M, et al. Antibodies against glutamic acid decarboxylase: prevalence in neurological diseases. J Neurol Neurosurg Psychiatry. 2001;71:100–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Schmidt C, Freilinger T, Lieb M, Remi J, Klein M, Straube A, et al. Progressive encephalomyelitis with rigidity and myoclonus preceding otherwise asymptomatic Hodgkin’s lymphoma. J Neurol Sci. 2010;291:118–20.

    PubMed  Article  Google Scholar 

  115. 115.

    Spitz M, Ferraz HB, Barsottini OG, Gabbai AA. Progressive encephalomyelitis with rigidity: a paraneoplastic presentation of oat cell carcinoma of the lung. Case report. Arq Neuropsiquiatr. 2004;62:547–9.

    PubMed  Article  Google Scholar 

  116. 116.

    Jain S, DeGeorgia M. Brain death-associated reflexes and automatisms. Neurocrit Care. 2005;3:122–6.

    PubMed  Article  Google Scholar 

  117. 117.

    Spittler JF, Wortmann D, von During M, Gehlen W. Phenomenological diversity of spinal reflexes in brain death. Eur J Neurol. 2000;7:315–21.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Saposnik G, Maurino J, Bueri J. Movements in brain death. Eur J Neurol. 2001;8:209–13.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Friedman AJ. Sympathetic response and brain death. Arch Neurol. 1984;41:15.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Beckmann Y, Ciftci Y, Incesu TK, Secil Y, Akhan G. Spinal reflexes in brain death. Acta Neurol Belg. 2014;114:303–6.

    PubMed  Article  Google Scholar 

  121. 121.

    McNair NL, Meador KJ. The undulating toe flexion sign in brain death. Mov Disord. 1992;7:345–7.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Bueri JA, Saposnik G, Maurino J, Saizar R, Garretto NS. Lazarus’ sign in brain death. Mov Disord. 2000;15:583–6.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Heytens L, Verlooy J, Gheuens J, Bossaert L. Lazarus sign and extensor posturing in a brain-dead patient. Case report. J Neurosurg. 1989;71:449–51.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Hanna JP, Frank JI. Automatic stepping in the pontomedullary stage of central herniation. Neurology. 1995;45:985–6.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Funakawa I, Mano Y, Takayanagi T. Painful hand and moving fingers. A case report. J Neurol. 1987;234:342–3.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Wider C, Kuntzer T, Olivier P, Debatisse D, Nancoz R, Maeder P, et al. Painful hand and moving finger treated by wearing a glove. Neurology. 2006;67:491–3.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Dressler D, Thompson PD, Gledhill RF, Marsden CD. The syndrome of painful legs and moving toes. Mov Disord. 1994;9:13–21.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Alvarez MV, Driver-Dunckley EE, Caviness JN, Adler CH, Evidente VG. Case series of painful legs and moving toes: clinical and electrophysiologic observations. Mov Disord. 2008;23:2062–6.

    PubMed  Article  Google Scholar 

  129. 129.

    Takahashi H, Saitoh C, Iwata O, Nanbu T, Takada S, Morita S. Epidural spinal cord stimulation for the treatment of painful legs and moving toes syndrome. Pain. 2002;96:343–5.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Bermejo PE, Zabala JA. “Painless legs and moving toes” syndrome due to spinal cord compression. Eur Spine J. 2008;17 Suppl 2:S294–5.

    PubMed  Article  Google Scholar 

  131. 131.

    Nathan PW. Painful legs and moving toes: evidence on the site of the lesion. J Neurol Neurosurg Psychiatry. 1978;41:934–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Schott GD. “Painful legs and moving toes”: the role of trauma. J Neurol Neurosurg Psychiatry. 1981;44:344–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Azzi J, Atweh S, Saade N, Jabbour R. Neuroleptics as a cause of painful legs and moving toes syndrome. BMJ Case Rep. 2014;2014.

  134. 134.

    Reich SG. Painful legs and moving toes. Handb Clin Neurol. 2011;100:375–83.

    PubMed  Article  Google Scholar 

  135. 135.

    Guieu R, Sampieri F, Pouget J, Guy B, Rochat H. Adenosine in painful legs and moving toes syndrome. Clin Neuropharmacol. 1994;17:460–9.

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Drummond PD, Finch PM. Sympathetic nervous system involvement in the syndrome of painful legs and moving toes. Clin J Pain. 2004;20:370–4.

    PubMed  Article  Google Scholar 

  137. 137.

    Okuda Y, Suzuki K, Kitajima T, Masuda R, Asai T. Lumbar epidural block for ‘painful legs and moving toes’ syndrome: a report of three cases. Pain. 1998;78:145–7.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Guieu R, Tardy-Gervet MF, Blin O, Pouget J. Pain relief achieved by transcutaneous electrical nerve stimulation and/or vibratory stimulation in a case of painful legs and moving toes. Pain. 1990;42:43–8.

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Eisa M, Singer C, Sengun C, Russel A, Jabbari B, Papapetropoulos S. Treatment of painful limbs/moving extremities with botulinum toxin type A injections. Eur Neurol. 2008;60:104–6.

    PubMed  Article  Google Scholar 

  140. 140.

    Schoffer K. Painful leg moving toes treated with botulinum toxin type A: a video report. Mov Disord. 2010;25:784–5.

    PubMed  Article  Google Scholar 

  141. 141.

    Rodriguez RL, Fernandez HH. Sustained benefit of painful legs moving toes syndrome with botulinum toxin type A. J Clin Neurosci. 2013;20:1031–2.

    PubMed  Article  Google Scholar 

Download references


We thank Paul Greene, MD for helpful comments.

Author information



Corresponding author

Correspondence to Pichet Termsarasab.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PT participated in drafting/revising the manuscript. TT participated in drafting/revising the manuscript, and illustrating all figures. SJF participated in drafting/revising the manuscript, video editing and study concept. All authors read and approved the final manuscript.

An erratum to this article is available at

Additional files

Additional file 1:

Video segment 1 demonstrates the phenomenology of spinal segmental myoclonus, priopriospinal myoclonus (PSM) and stiff limb syndrome. See section on Video segments for more details. (MP4 610968 kb)

Additional file 2:

Video segment 2 demonstrates the rich phenomenology of orthostatic tremor (OT) in five patients. See section on Video segments for more details. (MP4 503870 kb)

Additional file 3:

Video segment 3 demonstrates the phenomenology of painful legs-moving toes (PLMT) and painful hands-moving fingers (PHMF) syndromes. See section on Video segments for more details. (MP4 211600 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Termsarasab, P., Thammongkolchai, T. & Frucht, S.J. Spinal-generated movement disorders: a clinical review. J Clin Mov Disord 2, 18 (2015).

Download citation


  • Spinal cord
  • Spinal myoclonus
  • Orthostatic tremor
  • Paroxysmal dyskinesia
  • Stiff person syndrome
  • Brain death
  • Painful legs-moving toes syndrome